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Abstract
Quantitative simulation of precipitation in current climate has been an ongoing challenge for
global climate models. Despite serious biases in correctly simulating probabilities of extreme
rainfall events, model simulations under global warming scenarios are routinely used to provide
estimates of future changes in these probabilities. To minimize the impact of model biases, past
literature tends to evaluate fractional (instead of absolute) changes in probabilities of precipitation
extremes under the assumption that fractional changes would be more reliable. However, formal
tests for the validity of this assumption have been lacking. Here we evaluate two measures that
address properties important to the correct simulation of future fractional probability changes of
precipitation extremes, and that can be assessed with current climate data. The first measure tests
climate model performance in simulating the characteristic shape of the probability of occurrence
of daily precipitation extremes and the second measure tests whether the key parameter governing
the scaling of this shape is well reproduced across regions and seasons in current climate. Contrary
to concerns regarding the reliability of global models for extreme precipitation assessment, our
results show most models lying within the current range of observational uncertainty in these
measures. Thus, most models in the Coupled Model Intercomparison Project Phase 6 ensemble
pass two key tests in current climate that support the usefulness of fractional measures to evaluate
future changes in the probability of precipitation extremes.

1. Introduction

Global climate models (GCMs) are often the tool of
choice to assess the precipitation response to climate
change. However, despite their widespread use their
ability to simulate daily precipitation probabilities in
current climate, and consequently the confidence we
should have in them regarding future projections,
have often been called into question. For example,
models are known to rain too often and too little
[1–4], and have difficulty representing magnitudes
of extremes [5–7], especially in the tropics [8, 9].
Indeed, precipitation is one of the climate variables
that is most challenging to simulate, as it depends
on parameterization of sub-grid scale processes, and
changes can depend both on changes in moisture
and changes in convergence due to feedbacks with
heating, termed the thermodynamic and dynamic

contributions, respectively [10–13]. The complexities
and systemic problems ofGCMs in simulating precip-
itation have led researchers to decry the ‘Dreary state
of precipitation in climatemodels’ [14], andmay lead
to question how well founded are GCM projections
of future changes in precipitation, including changes
in the probability of the most societally impactful
extreme events.

Previous assessments of changes in extremes have
instinctively used fractional (i.e. percent) changes
(instead of absolute), under the implicit assumption
that despite biases in simulating the historical probab-
ility distribution of precipitation, fractional changes
would still be useful. However, up to this point, there
has not been a test that evaluates this assumption,
and consequently how confident we should be in this
approach to projecting future changes under global
warming.

© 2021 The Author(s). Published by IOP Publishing Ltd
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In this paper we focus on two keymeasures, which
can be evaluated using historical simulations, that can
decrease or boost confidence in projections of future
fractional changes in precipitation extremes. These
twomeasures are applied to the CoupledModel Inter-
comparison Project Phase 6 (CMIP6) Ensemble to
assess

(1) CMIP6models’ ability to simulate the shape of the
large daily precipitation probability tail in current
climate (although not necessarily its magnitude),
and

(2) CMIP6 models’ ability to simulate fractional
changes in the key scale that controls the extreme
tail overall magnitude.

Good model performance in these two measures
may be viewed as necessary conditions for reliable
future projections but we underline that they are
not sufficient conditions. Because our measures are
designed to test performance against historical obser-
vations, they do not directly address all possible vari-
ants of model behavior under warming. Rather, they
address whether the widespread existing practice of
assessing changes in simulated probabilities relative
to the simulated historical distribution [15, 16] can
be given observational underpinnings for the large-
event range.

2. Data andmethods

2.1. Models and observational datasets
This study uses the first available historical
(1990–2014) and end of the century (2075–2099)
ssp585 scenario simulation variants from 35 mod-
els (for historical runs) participating in CMIP6
[17] for which daily precipitation was available:
ACCESS-CM2∗, ACCESS-ESM1-5∗, BCC-CSM2-
MR∗, BCC-ESM1, CanESM5∗, CESM2∗, CESM2-
FV2, CESM2-WACCM∗, CESM2-WACCM-FV2,
CNRM-CM6-1∗, CNRM-CM6-1-HR∗, CNRM-
ESM2-1∗, EC-Earth3∗, EC-Earth3-Veg∗, FGOALS-
f3-L, FGOALS-g3, GFDL-CM4∗, GFDL-ESM4∗,
HadGEM3-GC31-LL∗, HadGEM3-GC31-MM∗,
INM-CM4-8∗, INM-CM5-0∗, IPSL-CM6A-LR∗,
MIROC6∗, MIRO-ES2L∗, MPI-ESM-1-2-HAM,
MPI-ESM1-2-HR∗, MPI-ESM1-2-LR∗, MRI-ESM2-
0∗, NESM3∗, NorCPM1, NorESM2-LM∗, NorESM2-
MM∗, SAM0-UNICON, UKESM1-0-LL∗. An aster-
isk denotes models with simulations available under
the Shared Socioeconomic Pathway SSP5-8.5 global
warming scenario [17, 18] (27 out of 35). To compare
models to observations and to estimate observational
uncertainty we use four observational estimates:
GPCP (90◦ S–90◦ N, 1997–2018) [19], CMORPH
v1 (60◦ S–60◦ N, 1998–2017) [20], PERSIANN v1
(50◦ S–50◦ N, 1983–2017) [21] and TRMM-3B42
(50◦ S–50◦ N, 1998–2018) [22]. All datasets are taken
from the Frequent Rainfall Observations on GridS

database [23]. Note that we compare over slightly dif-
ferent time periods, to make full use of the datasets.
Models and observational datasets are typically given
at different resolutions, so a regridding operation
was performed. Details of the regridding process are
given in the supplementary material (available online
at stacks.iop.org/ERL/16/024017/mmedia). We have
confirmed that results are robust to reasonable reg-
ridding choices.

2.2. Probability distributions in usual and rescaled
coordinates, and definition of the cutoff-scale
Probability density functions (PDFs) are estimated as
normalized frequency histograms with bins approx-
imately constant in log(P) space, with P denoting
daily precipitation. In what follows we assume that
daily precipitation PDFs are well characterized by a
functional form:

PDF(P)∝ P−τPG

(
− P

PL

)
, (1)

whereG is a generic function and PL is a precipitation
scale. For observed distributions, this is a cutoff-scale
because when P> PL, the probability distribution
drops much faster per order of magnitude precipita-
tion increase compared to the slower power law range
decay. The power law behavior (∝ P−τP) dominates
the form of the observed precipitation PDF for low
and moderate P values (for P< PL). Theoretical dis-
tributions commonly employed to describe non-zero
daily precipitation data and which follow this form
include Exponential [24], Gamma [25, 26], Weibull
[27, 28] and Generalized Gamma [29] distributions.
To tease out common properties of the extreme tail
(that is, for P> PL), that are independent of scale,
we assume that the cutoff-scale PL is proportional to
P̂L = σ2

P/P̄, where σ
2
P and P̄ are the variance andmean

daily precipitation over wet days, which we define as
days where P⩾ 0.1 mm. This moment-based estim-
ator is not the only way to estimate this scale, but
works for the four aforementioned distributions and
is reasonably robust for PDFs that depart from these.
We also assume that the influence of the power law
range is small in determining extreme event probab-
ility, which we find to be well justified in latter sec-
tions. In the case of a Gamma distribution PL = P̂L
and τP = 1− P̄/PL.

Based on these assumptions, we also calculate
probability distributions in a scaled coordinate

P∗ =
P

P̂L
, (2)

which allows us to examine similarities in the
shape (regardless of PL value) between observed and
modeled large daily precipitation probability tails
(i.e. how close are modeled and observed G(P∗) in
equation (1)), as exemplified in section 3. Variants
of this type of scaling have been used, for example,
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to study the large-event tail of precipitation event
sizes (also known as event accumulations) [30–34].
To simplify notation, in what follows we drop the hat
when making reference to P̂L.

The calculation of probability distributions can
be noisy if short time series are used, especially for
the extreme tail range. For this reason, to reliably cal-
culate extreme tails we first divide the 50◦ S–50◦ N
domain (the latitudinal extent of TRMM-3B42) into
120 regions of 10◦ latitude and 30◦ longitude and
then calculate probability distributions in each one of
them by pooling the time series from all grid points in
a particular region. For consistency, we also use these
regions for analysis in section 5.

3. Fractional vs absolute changes in
extremes

Errors in the simulation of precipitation in climate
models are difficult to quantify, due to substan-
tial differences in observational datasets for daily
precipitation [35]. This is illustrated in figure 1(a)
which shows the daily precipitation PDF over the
North Atlantic Storm Track region (30◦ N–50◦ N,
80 ◦W–40 ◦W), see figure 2(a)) calculated from
four observational datasets. While PDFs for daily
precipitation P calculated from reanalyses are well
approximated by Gamma distributions of form
PDF(P)∝

∼
P−τPexp(− P

PL
)—an approximate power

law range with exponent τP followed by a near expo-
nential cutoff scale PL limiting extremes [26, 36–
40]—the probability distributions diverge sharply
in absolute terms, as attested by their very differ-
ent τP and PL parameters. For example, probabil-
ity distributions in GPCP and TRMM-3B42, which
bracket the range of observational estimations in this
region and most of the globe (figure S1), are char-
acterized by τP = 0.20, PL = 9.2mm and τP = 0.64,
PL = 22.7mm respectively. The effect of the cutoff
scale PL on extremes can be readily appreciated from
figure 1(a), where a larger cutoff value in TRMM-
3B42 corresponds to larger probability of extremes in
absolute terms compared to GPCP.

As an example of model behavior, figure 1(a) also
shows the probability distribution over this region
calculated from output of GFDL-CM4, one of the
models participating in CMIP6 [17]. Although mod-
els often simulate a more complex probability dis-
tribution shape than observed [41], this model and
many others exhibit a relatively simple behavior at
the extreme tail—an approximate exponential decay
range, seen as an approximate straight line in the
semi-log plot for values above the cutoff.

While it is clear that models do not capture
observed daily rainfall probability distributions in
absolute terms, the main quantity of interest for

Figure 1. (a) Probability distributions for the region shown
in figure 2(a) calculated from four observational datasets
(GPCP, PERSIANN V1, CMORPH v1 and TRMM-3B42;
squares) and one CMIP6 model (GFDL-CM4, black
circles). Note the different cutoff scales PL in each dataset
(big circle markers). (b) As in (a) but rescaled by their
respective PL, allowing similarities in the shape of the
extreme tail (above P∗ = P

PL
= 1) to be evaluated. Big circle

markers shows the location of the cutoff-scale in P∗

coordinates (P∗L = 1 in all cases). In addition to datasets in
(a), rescaled distributions in ACCESS-ESM1-5, CanESM5,
CESM2, FGOALS-g3, INM-CM5-0 and IPSL-CM6A-LR
are also shown. (c) Schematic of the effect of an increase in
the cutoff scale P∗L on the extreme tail probability. This is
illustrated in rescaled coordinates but same fractional
changes apply for daily precipitation before rescaling. As an
example, we use a fractional increase in P∗L of 21%, which
(under no changes in dynamical contribution) would
correspond to a Clausius–Clapeyron scaling for a 3 ◦C
temperature increase. Using same τP = 0.5 for both curves
yields a fractional increase of the 99.9th daily precipitation
percentile P∗99.9 (over wet days) also of 21%. The actual
fractional increase of P∗99.9 (or P99.9) will have a small
dependence on how τP adjusts (see supplementary
material).
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Model error smaller than 
typical difference between 
observational datasets

Figure 2.Model error in the shape of the daily precipitation distribution tail. (a) CMIP6 etail multi-model mean (contours). Red
crosshatching denotes regions where the value of etail is less than the observational uncertainty. The red box denotes the North
Atlantic Storm Track region referred in figure 1. For visual clarity, results have been interpolated into a 5◦ by 5◦ grid prior to
display. (b) Individual area averaged model values of etail. These are calculated by integrating etail from all 120 boxes (see text)
within 50◦ S–50◦ N. Models with smaller values of etail simulate better representations of the extreme portion of the scaled
probability distribution compared to TRMM-3B42. Black bars shows differences between scaled TRMM-3B42 and CMORPH v1,
PERSIANN v1 and GPCP observed distributions. Note that etail measures the relatively small difference between the shape of
distributions after rescaling, as illustrated in figure 1(b).

global warming projections of extremes is usually the
relative change (i.e. a percent or fractional change) of
extreme percentiles respect to a reference historical
state [15, 16]. In this case, the benchmark for models
to provide useful information is more modest. First,
they should simulate the correct shape of the probab-
ility distribution extreme tail (for values larger than
the range of validity of the power law range, i.e. above
the cutoff scale) compared to observations. Second,
they should correctly simulate the physical scale that
governs the scaling of this tail across regions. Assum-
ing a form of the extreme tail that is close to exponen-
tial, and that global warming induced changes in the
extreme tail are completely described by a change in
parameter δPL, then the relative change of a extreme
daily precipitation percentile Pq (over wet days) is
given by:

δPq
Pq

≈ δPL
PL

, (3)

(see supplementary material), a relation we assess
below. That is, to leading order a percent change in a

extreme percentile is solely given by a percent change
in the cutoff scale, and is approximately independent
on how the power law range exponent τP adjusts.

As a baseline model, previous studies often
assume that fractional increases in extreme precipit-
ation percentiles follow a Clausius–Clapeyron (CC)
scaling ≈7%/K [15, 42, 43]. However, from mois-
ture budget considerations, the daily precipitation
cutoff scale PL scales with the amplitude of moisture
convergence fluctuations within precipitating events
[26, 44]. Thus, for a global warming scenario the
fractional change of PL (

δPL
PL
) incorporates a thermo-

dynamical contribution given by increases in mois-
ture (following approximately a CC scaling) [16], a
dynamical contribution associated with changes in
column convergence [10–13, 45] and changes in the
covariance between these two terms. Regardless of
whether contributions to fractional changes in PL are
dynamical or thermodynamical in origin, this frac-
tional change is the same in usual P or scaled P∗ = P

PL

coordinates. That is δPL
PL

=
δP∗L
P∗L

(which can be easily

derived from P∗ definition. Note that P∗L = 1), which
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implies that fractional changes in PL are independent
of the absolute value of PL in current climate.

We illustrate this in the schematics in figure 1(c)
showing a postulated change in the probability dis-
tribution under global warming given by a fractional
increase in PL, similar to what [26, 46, 47] have repor-
ted. Here the fractional change in the 99.9th percent-
ile is the same whether this is assessed over daily pre-
cipitation in absolute terms (P, not shown) or over
daily precipitation rescaled by the historical cutoff
scale (P∗, figure 1(c)).

Although we have shown that fractional changes
in extreme daily precipitation percentiles do not
depend on the absolute value of the current climate
cutoff scale (for a given location), model perform-
ance still depends on an accurate simulation of the
shape of the extreme tail. For this reason, we evalu-
ate model representation of the extreme tail of daily
precipitation after rescaling (that is, in P∗ coordin-
ates). To illustrate, figure 1(b) shows the effect of res-
caling the observational datasets andGFDL-CM4 and
several other CMIP6 models daily precipitation data
in figure 1(a) by their cutoff scales on the respect-
ive probability distributions. This operation allows
to evaluate similarities or differences in the shape
of the large daily precipitation probability tail. Now
that P∗L = 1 in all cases, the rescaled probability dis-
tributions lie much more closely together, meaning
that the shape of their respective extreme tails (above
their respective cutoff scales) is similar. This implies
that, although estimations of PL differ in absolute
terms between observational datasets and CMIP6
(e.g. figure S2 in supplementary material) (implying
also a large difference in absolute probabilities), the
same fractional change in PL (as in figure 1(c)) will
yield similar fractional changes in extreme daily pre-
cipitation percentiles in all cases.

4. Testing the shape of the extreme tail

As outlined in the Introduction, these considerations
motivate a two-part test in which we evaluate (i) how
well CMIP6 models capture the shape (after res-
caling) of the daily precipitation extreme tail com-
pared to observations, discussed in this section and
(ii) the ability of CMIP6 models to simulate frac-
tional changes in PL, discussed in section 5. The lat-
ter point cannot be tested directly for global warming
conditions, nor we can reliably test against past con-
ditions, due to the insufficient length of quality global
gridded datasets (~20 years). For this reason, we test
how well models simulate spatial fractional changes
in current climate. While this is not a perfect substi-
tute, it does test fractional changes over a larger range
ofmeteorological conditions than the range projected
for future changes. If both these aspects (extreme tail
shape and PL spatial distribution) are well simulated,
then together they provide substantial underpinnings

for the ability of models to simulate future fractional
changes in extremes.

To assess how well models simulate the shape
of daily precipitation probability distributions in
their extreme tail we introduce a simple metric
etail. This metric characterizes the distance between
modeled and observed probability distributions
above their respective cutoff scales. This metric is
defined as

etail =

ˆ ∞

P∗L

|PDFmodel(P
∗)− PDFTRMM-3B42(P

∗)|dP∗,

(4)
where PDFmodel(P∗) and PDFTRMM-3B42(P∗) denote
model and TRMM-3B42 observational estimates,
respectively, of daily precipitation probability distri-
butions rescaled by their respective cutoff scales (as
in figure 1(b)). Under this rescaling, the cutoff scale
occurs at P∗L = 1 for both modeled and observed
probability distributions. We have tested other defin-
itions for etail [49–51] with similar results (figure S3
supplementary material). In terms of model evalu-
ation, a small value of etail means that the shape of the
extreme tail in themodel closely followsTRMM-3B42
observational estimate, with a value of etail = 0mean-
ing that the modeled extreme tail perfectly tracks
observations. For probability distributions normal-
ized such that they integrate to one for values above
P∗L the maximum value of etail is equal to 2, however
this is rarely found in practice. The measuring stick
we use to assess the performance of the multi-model
mean (figure 2(a)) or particular models (figure 2(b))
is to compare against a similarly calculated etail dis-
tance between TRMM-3B42 and GPCP, which gives
an estimation of the observational uncertainty. This
uncertainty, in principle, could be tightened over
North America or Western Europe where there is a
dense network of stations (although issues in terms of
the mismatch of scales between stations and models
would apply), but here we are interested specifically
in the near-global case.

Figure 2(a) shows a map of the CMIP6 multi-
model mean etail, with stippling denoting regions
where the multi-model mean is within observational
uncertainty. This map can provide valuable inform-
ation to decision makers to assess how much to
trust model projections of changes in precipitation
extremes at the regional level. The values of etail are
small in mid latitudes andmodest in the tropics (typ-
ical values on the order of 0.03 and 0.2, respectively
relative to a theoretical maximum of 2). The observa-
tional uncertainty for the rescaled distributions is also
modest (figure S4 supplementary material), although
larger in the tropics. In contrast with previous stud-
ies showing poor model performance in simulating
tropical extremes in absolute terms [8, 16], in most
of the tropics models perform within observational
accuracy. Overall, the CMIP6multi-model mean per-
forms as well or better than the distance between
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observational datasets in 67% of the 50◦ S–50◦ N lat-
itude band for which TRMM data are available, with
exceptions occurring primarily in subtropical regions
with little precipitation. At the individualmodel level,
28 out of 35 models perform better than this meas-
ure of observational uncertainty (figure 2(b)), when
integrating etail over 50◦ S–50◦ N.Note that the GPCP
to TRMM-3B42 difference was chosen to span the
typical range between the observational data sets. If
we had some basis on which, e.g. GPCP could be
eliminated from the range of observational estimates,
reducing the comparison range to observational data-
sets more similar to TRMM-3B42 (figure 2(b), see
also figure S1) then fewer (8 models) or no models
perform better than the difference between TRMM-
3B42 and PERSIANN v1 and CMORPH v1 respect-
ively. However, we are not aware of clear evidence
that would support such a reduction in the observa-
tional uncertainty. We also emphasize that the differ-
ences being evaluated here are the small differences in
the rescaled distributions, typified by figure 1(b). We
conclude that models generally capture the shape of
the extreme upper tail of daily precipitation probab-
ility distribution as well, or better, than the extent to
which two widely used observational data sets span-
ning current observational uncertainty agree with
each other over most of the globe.

5. Testing the spatial distribution of the
cutoff scale

The second aspect we test is models’ ability to simu-
late fractional changes in PL as a function of spatial
region and season. As illustrated in figure 1(a), mod-
els and observational datasets do not simulate in gen-
eral the same magnitude for the cutoff-scale PL but
the shape of the extreme tail, after rescaling, is well
simulated (section 3; see figure 1(b) for an illustra-
tion). However, regardless of the magnitude of the
simulated cutoff-scale,modeled PL fractional changes
will compare favorably to observed fractional changes
if modeled and observed PL spatial patterns are well
correlated (see supplementary text for details). So, we
test spatial fractional changes by calculating the spa-
tial correlation between modeled and TRMM-3B42
PL spatial patterns. As before, the benchmark we use
to judge models is to compare to PL pattern correla-
tion between TRMM-3B42 and GPCP, which typify
the range among observational estimates.

The CMIP6multi-modelmean and TRMM-3B42
PL spatial patterns are shown in figures 3(a) and (b)
respectively. We note that the CMIP6 multi-model
mean PL pattern (figure 3(a)) tends to be smaller
in magnitude compared to the TRMM-3B42 pattern
(figure 3(b)), implying that extremes (in absolute
terms) tend to be subdued inCMIP6 compared to this
observational dataset (as occurs in figure 1(a)). How-
ever, despite differences in magnitude (which as long
as each grid point has a similar bias are unimportant

for fractional changes), the spatial pattern of the
CMIP6 multi-model mean of PL is reasonably cor-
related with the corresponding GPCP (r= 0.7) and
TRMM-3B42 (r= 0.85) patterns at the regional level
(figure 3(c)), with even larger correlation coeffi-
cients if one is less interested in the details of the
regional pattern (r= 0.8 and r= 0.94 with GPCP and
TRMM-3B42 zonal averages respectively). This rela-
tionship between PL multi-model mean spatial pat-
tern and TRMM-3B42 is tighter than the extent to
which GPCP and TRMM-3B42 agree with each other
(r= 0.67 at the regional level, r= 0.86 for zonal aver-
ages). This is also the case for most individual mod-
els (26 of 35 models correlate comparably or better
than the twodata sets), and also tends to hold for indi-
vidual seasons (figure 3(f)).

Despite absolute errors in the historical simulated
PDFs (compare figures 3(a) and (b)), the good agree-
ment between modeled and observed PL spatial pat-
terns boost confidence in models ability to simulate
future PL and extreme percentiles fractional changes.
Although there are substantial regional variations in
τP (not shown), the spatial patterns of extreme per-
centiles largely depend only on the PL spatial pat-
tern, in agreement with equation (3) (with δPL and
δPq denoting spatial differences in this context). This
is clearly the case in observations and also models,
where there is a strong correlation between extreme
percentiles Pq (over wet days) and PL spatial pat-
tern (r= 0.96 for 99.9th percentile P99.9 in the CMIP6
multi-model mean, figure 3(d)). This is also true
for individual models and seasons (figure S5 sup-
plementary material), and also true for future global
warming fractional changes in the CMIP6 ensemble
(figure 3(e)).

Due caution is necessary in using behavior across
spatial regions in current climate as a contribution
to inferring confidence in behavior under warming.
Both can involve changes in precipitation type, associ-
ated meteorological features and other complications
[52]. However, the simple dependence of extreme
daily precipitation percentiles on a single distribu-
tion parameter (PL) implies that within the specific
context of this regime of the daily precipitation PDF,
the effect of PL changes due to spatial differences
(figure 3(d)) map onto similar changes due to warm-
ing. Figure 3(f) illustrates this with the example of
current and future climate PDFs in the US Midw-
est (40◦ N–48◦ N, 95 ◦W–80 ◦W) in the UKESM1-0-
LL model. In current climate, the cutoff-scale PL is
16.0mm and 99.9th percentile (over wet days) P99.9 is
78.2mm (see dots in figure 3(d)) while in the global
warming scenario at the end of the century, PL has
increased about 25% to 20mm (horizontal red arrow
in figure 3(d)). This future fractional increase is sim-
ilar to the current climate difference between theMid-
west and Florida (25◦ N–32◦ N, 84◦ W–80◦ W) in the
model (figure 3(d)). Thus for the daily precipitation
PDF, the current climate Florida PDF provides an
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Figure 3. Evaluating model simulation of the cutoff scale PL. (a) Map of CMIP6 PL multi-model mean. (b) Map of PL calculated
from TRMM-3B42 daily precipitation data. Note that since we are interested in the spatial pattern and not on its overall
magnitude, the colorbar differs from (a). (c) Scatter plot of CMIP6 model mean vs TRMM-3B42 PL spatial distribution for
precipitation data aggregated on 10◦ latitude by 30◦ longitude boxes (blue dots, r= 0.85) and PL zonally averaged (red dots,
r= 0.94). (d) Scatter between the CMIP6 multi-model mean of PL and the 99.9th daily precipitation percentile over wet days P99.9
for same boxes as (c). Markers show historical and global warming PL, P99.9 pairs in the US Midwest and Florida (historical only)
in UKESM1-0-LL, in coordination with (f). Although wet-days percentiles do not necessarily predict all-days percentiles [48], we
also note a good agreement between PL and the 99.9th all-days percentile (r= 0.91) (e). Scatter between global warming

fractional changes of PL (
δPL
PL

) and fractional changes of the 99.9th percentile ( δP99.9
P99.9

) in the CMIP6 multi-model mean ensemble.

(f) UKESM1-0-LL daily precipitation probability distributions for the USMidwest under historical (1990–2014, green) and global
warming (2075–2099, red) conditions. Similar for Florida under historical (1990–2014, black) conditions. Markers indicate the
value of PL in each case. Compared to UKESM1-0-LL current climate US Midwest value, PL is 26% larger under global warming
and 24% larger in current climate Florida. (g) Correlation coefficients as in (c) but between PL in TRMM-3B42 and individual
models. Correlation coefficients are also shown for seasonally stratified data. Vertical line shows the correlation coefficient
between GPCP and TRMM-3B42 PL patterns for annual data, and light-gray shading encompasses the 5th and 95th percentile of
this correlation based on resampling GPCP and TRMM-3B42 data 500 times by randomly selecting (with replacement) yearly
data over their common period (1998–2018). Models that fall within the light-gray band have correlations as good as
observational datasets have to each other when one accounts for sampling variability. Models are indexed as in figure 2(b).

example of future precipitation probabilities in the
Midwest through the large event range (figure 3(f)).
We underline that we are not advocating location to
location comparisons, but rather illustrating that the
simplicity of the large-event tail of the PDF suggests
usefulness of the range covered in current climate for
tests of properties relevant to future changes.

6. Concluding remarks

The insight gained here for fractional changes in
extremes would be elusive if looking at the daily pre-
cipitation extreme tail in absolute terms. Currently,

CMIP6 models exhibit a variety of different cutoff-
scale magnitudes, with corresponding different
extreme percentiles (e.g. figure S2, see also refer-
ence [53]), which tend to disagree with observational
estimates. Assessments in absolute terms are also
complicated because observational estimates them-
selves differ substantially (e.g. figure 1(a)). However,
many studies look at relativemeasures of change, such
as the change in probability of exceeding a threshold
given by a particular percentile or return time in
the models simulated historical climate [15, 16, 54–
60]. Such measures make the implicit assumption
that even though the absolute precipitation value
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corresponding to the model probability measure
does not match that in observations, simulations
of the fractional changes will nonetheless provide a
reasonable estimate. This assumption has been dif-
ficult to test, but the results here isolate aspects of
this assumption that can be evaluated from current
climate. The majority of models simulate a satis-
factory representation of the shape of the extreme
tail after rescaling by the cutoff scale PL, with most
models providing results that are closer to TRMM-
3B42 observational estimate than the current obser-
vational uncertainty. While future changes in PL are
not possible to evaluate observationally, we find that
models simulate a current climate regional pattern of
PL that is well correlated with observations, and in
the case of many models correlates even better that
the extent to which GPCP and TRMM-3B42 agree.
This suggests that physical processes (column water
vapor and convergence spatial distribution within
precipitating events) leading to the current spatial
distribution of extreme precipitation are reasonably
well simulated by the current generation of state-
of-the-art models (albeit of different magnitude),
and to the extent that model performance simulating
current climate is a predictor of their ability to sim-
ulate future changes, this boosts confidence that this
remains the case under global warming conditions.
We note the caveats that this is a current-climate,
not an emergent-constraint criterion, and that this
test across regions does not guarantee changes will
be well simulated for individual regions. Overall,
despite issues in model simulations of daily precip-
itation probability distributions in absolute terms,
the reasonable simulation of (i) the shape of the
distribution, and (ii) the proportionality of the key
scale of the distribution in models to that in observa-
tions across a wide range of conditions provide two
current-climate measures that supports the useful-
ness of model projections of fractional changes in
extremes.
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